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Purpose: To improve the depiction and tracking of vocal tract articulators in spiral
real-time MRI (RT-MRI) of speech production by estimating and correcting for
dynamic changes in off-resonance.

Methods: The proposed method computes a dynamic field map from the phase of
single-TE dynamic images after a coil phase compensation where complex coil
sensitivity maps are estimated from the single-TE dynamic scan itself. This method is
tested using simulations and in vivo data. The depiction of air–tissue boundaries is
evaluated quantitatively using a sharpness metric and visual inspection.

Results: Simulations demonstrate that the proposed method provides robust off-
resonance correction for spiral readout durations up to 5 ms at 1.5T. In -vivo experi-
ments during human speech production demonstrate that image sharpness is
improved in a majority of data sets at air–tissue boundaries including the upper lip,
hard palate, soft palate, and tongue boundaries, whereas the lower lip shows little
improvement in the edge sharpness after correction.

Conclusion: Dynamic off-resonance correction is feasible from single-TE spiral RT-
MRI data, and provides a practical performance improvement in articulator sharpness
when applied to speech production imaging.
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1 | INTRODUCTION

Real-time MRI (RT-MRI) has become a valuable tool for
speech production research1-3 and is now a preferred tool in
speech science to alternative imaging modalities including
x-ray microbeam,4 electromagnetic articulography,5 and
ultrasound.6 RT-MRI provides a non-invasive capture of the
dynamics of deep articulatory structures (e.g., pharynx, glot-
tis, and epiglottis) during speech production and allows for
arbitrary imaging planes. In this context, spiral RT-MRI
scanning is desirable because it allows for a time-efficient

acquisition, given that spirals can provide higher spatio-
temporal resolution than alternative schemes.1

A key drawback of spiral MRI is signal loss and/or blur-
ring artifacts that result from field inhomogeneity, also called
“off-resonance”.7 This can be significant at air–tissue interfa-
ces because of their magnetic susceptibility difference
(Dv5 9.41 parts per million).8 Furthermore, these artifacts
near the air–tissue boundaries9 are more pronounced with
long spiral readout or at high field strength MRI scanners.
To mitigate this artifact, current RT-MRI studies for speech
production are most often conducted using short duration
readouts (�2.5 ms) and at lower field strength (1.5T) MRI
scanners.10-12

Off-resonance artifacts have significant potential impact
on the analysis of articulator dynamics, which is of prime
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interest in speech science. The articulators of interest include
the surfaces of the lips, tongue, hard palate, soft palate
(velum), and structures along the pharyngeal airway. These
are located at air–tissue interfaces and therefore are vulnera-
ble to the artifacts. Previously used speech RT-MRI bio-
markers, such as average pixel intensity13,14 in regions of
interest (ROI), are prone to error because of artefactual air-
way area perturbation. Any temporally varying blur of soft
tissues can result in changes in the detected patent airway
and will disrupt the estimation of constriction kinematics,
such as timing in consonant production.13 Air–tissue bound-
ary segmentation15-17 is required as a pre-processing step in
acquiring vocal tract area functions18 and suffers in the pres-
ence of ambiguous boundaries with poor contrast. Velophar-
yngeal insufficiency19-23 is caused by incomplete closure
between the soft palate and the posterior and lateral pharyn-
geal walls, and its assessment can be hampered by signal
loss near the soft palate.

Several deblurring methods in spiral scanning have been
proposed in the literature,24-30 most of which require a measure-
ment of a frequency offset image, also called a “field map.”24-26

A previous study applied this approach to spiral RT-MRI of
vocal tract31 where spirals with 2 different TEs were obtained in
an interleaved fashion, and a dynamic field map was estimated
using each pair of consecutive images. This field map-based
method showed improvement of image quality in the tongue
and soft palate. The reconstructed images, however, could suffer
from flickering artifact between consecutive images recon-
structed with different TEs. This scheme also requires a compro-
mise in temporal and/or spatial resolution31 and is not applicable
to previously collected single-echo-time data.

An alternative approach is to estimate the field map
directly from the data set itself, known as “auto-focus.”27-30

Auto-focus methods use an image-domain focus metric that
provides local information about the presence of residual off-
resonance artifacts based on the off-resonance point spread
function (PSF). A widely used metric is the absolute value of
the imaginary component of the image (after correcting for a
coil phase) at an image location.28 It assumes that the imagi-
nary component should be zero when the local effects of off-
resonance have been corrected. These methods have shown
comparable results to the methods that acquire the field map.
However, these are computationally demanding and perform-
ance depends on the focus metric used and can be sensitive
to experimental factors, such as MRI sequence parameters,
SNR, and the accuracy of coil sensitivity maps (especially
their phase). Additionally, spurious minima of the focus met-
ric can occur as the range of off-resonance at air–tissue inter-
faces (�600Hz at 1.5T) is large enough to produce more
than 1 cycle of phase accrual (>2p) even during a short spi-
ral readout (�2.5 ms).27,32,33

In this work, we present a simple dynamic off-resonance
estimation method for spiral imaging where a dynamic field

map is directly estimated from the phase of single-TE
dynamic images after a coil phase compensation. We esti-
mate complex coil sensitivity map from the single-TE scan
itself. Our approach does not require a dynamic two-echo
measurement of a field map nor the use of a focus metric.
Therefore, it can be performed on conventional real-time spi-
ral data without the need for additional scanning and is not
computationally intensive. We evaluate this method using
simulations and on an existing multi-speaker data set of
speech RT-MRI. We demonstrate improvements in the
depiction of air–tissue boundaries quantitatively using an
image sharpness metric and visual inspection, and the practi-
cal use of this method on the boundary segmentation and dis-
tance metric as a use case example.

2 | THEORY

2.1 | Spiral imaging in the presence of the
field inhomogeneity

In spiral MRI, ignoring relaxation and noise, the signal equation
of an object with a transverse magnetizationm0ðrÞ is given by

sðsÞ5
ð
r

mðrÞe2j2pf ðrÞse2j2pkðsÞ�rdr; (1)

where s 2 ½0; Tread� is time variable defining s 5 0 as the start
of the readout; Tread is the readout duration. r and kðsÞ are the
spatial coordinate and the k-space trajectory, respectively. In
mðrÞ5m0ðrÞCðrÞe2j2pf ðrÞTE, f ðrÞ is the off-resonance fre-
quency presented at r, and CðrÞ is the complex coil sensitivity
map.

Consider the image signal (~mðrÞ) reconstructed from sðsÞ
without off-resonance correction as follows:

~mðrÞ5
ð

r0

mðr0Þ PSF
�
r0; r; f ðr0Þ

�
dr

0
; (2)

where PSF
�
r0; r; f ðr0Þ

�
5
Ð Tread
0 WðsÞe2j2pff ðr0Þs1kðsÞ�ðr02rÞgds

is a PSF of an imaging system using a particular k-space
trajectory in the presence of f ðrÞ; WðsÞ denotes the pre-
density compensation function for the trajectory. When
f ðrÞ � Tread � 0, we can ignore a phase accrual because
of off-resonance during the readout. Then, the PSF in
Equation 2 is a sharp impulse at r so that the image signal in
Equation 2 can be approximated by ~mðrÞ � mðrÞ5
m0ðrÞCðrÞe2j2pf ðrÞTE.

2.2 | Field map estimation in spiral imaging

Consider spiral RT-MRI, where the image time series
(miðr; tÞ) for i-th coil is:
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miðr; tÞ � m0ðr; tÞCiðrÞe2j2pf ðr;tÞTE; (3)

where t represents time frame, f ðr; tÞ is dynamic off-
resonance, and CiðrÞ is the complex coil sensitivity map that
is spatially smooth and independent of time. Phase accrual
during the spiral readout is ignored. Assuming that m0ðr; tÞ
is real, we can compute an estimate of the dynamic field
map, f̂ ðr; tÞ, as follows:

f̂ ðr; tÞ5/m̂0ðr; tÞ=ð22pTEÞ: (4)

where m̂0ðr; tÞ denotes a coil-composite image using the
optimal B1 combination,34 which is given by

m̂0ðr; tÞ5
XNc
i51

miðr; tÞĈ�
i ðrÞ; (5)

and ĈiðrÞ is an estimate of the sensitivity maps, Nc is the
number of coil components, and Ĉ

�
i ðrÞ is the complex conju-

gate of Ĉ iðrÞ.

3 | METHODS

3.1 | Implementation of field map estimation
for speech RT-MRI

Figure 1 illustrates the proposed field map estimation pro-
cess. The individual coil image frames miðr; tÞ are first
reconstructed from raw k-space siðk; tÞ using sliding window
view-sharing with the non-uniform fast Fourier transform
(NUFFT).35 For sliding window view-sharing, reconstruc-
tions were performed every 4 spirals using a temporal win-
dow of 13 spirals (fully sampled k-space). Note that this
number matches to a frame rate of dynamic images to be
reconstructed in off-resonance correction, which will be
described more in the “Off-resonance correction” section.
The multi-coil images are then merged into composite image
frames m̂0ðr; tÞ based on Equation 5 using complex coil sen-
sitivity maps, whose estimation will be discussed later. m̂0ðr;
tÞ is then smoothed by convolution with a 3D Hanning win-
dow (r-t) with size 33 33 3 to reduce noise, and masked by
either of 0 or 1 based on a threshold (2% of maximum of the
absolute squared value of the smoothed image) to control
uninitialized values in air spaces that result from a lack of
image signal. Consequently, a dynamic field map is esti-
mated from the smoothed and masked images of m̂0ðr; tÞ
based on Equation 4.

Complex coil sensitivity maps ĈiðrÞ (the ‘i’ subscript
indicates the i-th coil element) are estimated from a tempo-
rally averaged and spatially low-pass filtered image. The
individual coil image frames miðr; tÞ (shown in Figure 1) are
averaged over time and low-pass filtered by a 2D Hanning
window with size 153 15 (FWHM � 8 pixels). Note that
this low-pass filter is different from the smoothing applied to
m̂0ðr; tÞ and is comparable to a low-pass filter that takes

12.5% of the central part of the k-space. These settings were
chosen empirically. Then, the resultant image �mlow

i ðrÞ is used
to estimate the coil map by Ĉ iðrÞ5�mlow

i ðrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
j�mlow

i ðrÞj2
q

.

A drawback of this approach is that the spatially smooth por-
tion of the time-averaged field map will be spuriously
included in the coil sensitivity map and will not be corrected,
which will be extensively discussed in the “Discussion”
section.

3.2 | Simulation

To assess the accuracy of the proposed field map estimation,
a simulation was performed with various spiral readout

FIGURE 1 Flow chart illustrating the proposed field map estimation
method. The raw image frames from individual coils are first reconstructed
from the raw k-space data using view-sharingwithNUFFT. The coil sensi-
tivity maps are estimated from the multi-coil image frames after temporal
average and spatial low-pass filter. The multi-coil image frames are then
merged into composite image frames using the complex coil maps by
Equation 5. The composite images are smoothed andmasked, and a
dynamic field map is estimated from the phase of the resulting image
frames by Equation 4
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durations as follows: Cartesian images with 2 TEs (DTE5 1
ms) were acquired from a healthy subject at 5 postures
including mouth open at varying angles such as mouth fully
open and mouth half open, mouth closed, and tongue tip
raised to the front of the palate. For each of the postures, a
reference field map was obtained from the phase difference
between the images acquired at 2 TEs divided by DTE
shown in Figure 2A. For a given spiral trajectory, spiral
k-space data were synthesized from the magnitude of the
Cartesian image from the first TE based on Equation 1. The
reference field map was used to simulate off-resonance
effects on the synthesized spiral k-space data. Those data
simulations were performed with different readout durations
varying from 0 ms to 6.3 ms with 0.63-ms increment.
Finally, we estimated a field map from the simulated
data and attempted to correct for off-resonance based on the
estimated field map.

3.3 | Application to existing speech RT-MRI
data

Experiments were performed on a speech RT-MRI dataset
collected at our institution using a standardized vocal-tract
protocol.36 It currently contains more than 20 healthy sub-
jects’ data on a wide variety of speech tasks to capture
salient, static and dynamic, articulatory characteristics of
speech production as well as morphological aspects of the
vocal tract.36 Notice that the degree of blurring artifacts in
their images varies depending on the subjects and speech
tasks. We selected 20 subjects (N5 20, 10 F/10M; age 19–
31 y) with several speech tasks from the data set.

Imaging was performed using a real-time interactive
imaging platform (RT-Hawk, Heart Vista, Los Altos, CA) 37

on a commercial 1.5T scanner (Signa Excite, GE Healthcare,
Waukesha, WI). The body coil was used for RF transmis-
sion, and a custom 8-channel upper airway coil12 was used

FIGURE 2 Representative simulation results. (A) Amagnitude image and reference fieldmap acquired fromCartesian dual-TE acquisition.
(B) Synthesized spiral images using the magnitude image and reference field map with different readout durations (1.26, 3.15, and 5.04ms). Off-resonance
blurring is most apparent near the lips, hard palate, and tongue boundary and becomes worse with the longer readouts. (C) Field maps (unit: Hz) estimated
from phase of the spiral complex images shown in (B). (D) Estimation errors in the field map (error maps amplified by a factor of 3 for better visualization).
(E) Spiral images after correction for off-resonance based on the estimated field map represented in (C)
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for signal reception. A 13-interleaf spiral spoiled gradient
echo pulse sequence was used. Imaging was performed in
the mid-sagittal plane. Imaging parameters used were:
Tread 5 2.52 ms, spatial resolution5 2.43 2.4mm2, slice
thickness5 6mm, FOV5 2003 200mm2, TR5 6.004 ms,
TE5 0.8 ms, receiver bandwidth56125 kHz, and flip
angle5 158. In addition to the automatic shimming provided
by the prescan calibration from the scanner, we performed a
manual adjustment of the center frequency as described in
Lingala et al.1,12 Specifically, we on-the-fly adjusted the cen-
ter frequency in a way that air–tongue boundary is sharp in
the mid-sagittal plane while the subject being scanned is in a
neutral open-mouth position.

3.4 | Off-resonance correction

We use an iterative approach38,39 where the off-resonance
exponential term is approximated by a set of bases to
improve computational speed and to reconstruct a
deblurred image. We integrate this approach into a recent
sparse-SENSE reconstruction method12 that uses temporal
finite difference constraint to improve time resolution in
the time-series of spiral images of speech. Specifically,
off-resonance exponential term shown in Equation 1 is
approximated by non-exponential bases at each time
frame, by using histogram principal components (K5 40
bins) and singular value decomposition analysis (L5 6)
described in Equations 19 and 20 from Fessler et al.39 The
approximated bases are incorporated into the imaging
model used in the sparse-SENSE reconstruction.12 Raw k-
space data and an estimated coil map are then fed into the
reconstruction algorithm as inputs. In turn, it generates a
corrected time-series of images. For evaluating the effec-
tiveness of off-resonance correction, the original time-
series of images were also reconstructed using the sparse-
SENSE reconstruction without the modification. All the
images were reconstructed with a temporal resolution of
24 ms/frame (41.66 frames/s, 4 spiral interleaves/frame,
and with reduction factor R5 3.25). For implementation, a
nonlinear conjugate gradient (CG) algorithm with NUFFT
was coded using MATLAB (The MathWorks, Natick,
MA) on using 8 cores on a 16-core Intel(R) Xeon(R) CPU
E5-2698 v3; 2.30 GHz with 40 MB of L3 cache. The com-
putation time was �60 s to estimate the coil sensitivity
maps and the field maps for 400 time frames from raw k-
space data (�10 s long dynamic images) and 30 and 180
mins to reconstruct images without and with off-resonance
correction, respectively.

3.5 | Sharpness score

We introduce an image sharpness measure to investigate the
impact of the proposed method on articulator air–tissue

boundaries. We quantitatively compare the metric scores
between the images with and without correction. We
hypothesize that the proposed method would improve the
image depiction at air–tissue articulator boundaries in 2 ways
—the blurred-edge width be narrowed and/or the contrast at
the edge be enhanced. We define an edge-slope metric for
sharpness as follows.

Using a semi-automatic boundary extraction method,16

we extract the superior–posterior (upper) boundary and the
inferior–anterior (lower) boundary as shown in Figure 3A.
Intensity profiles (grid lines) perpendicular to the upper and
lower boundary (Figure 3B) of the patent airway are chosen
and extracted from a reconstructed image series with a nor-
malized intensity between 0 and 1 and linearly interpolated
to generate 10 times greater spatial resolution. Finally, the
sharpness score (S) is calculated (Figure 3C) as follows:

S5a
CNR
d

; (6)

where a is a scaling factor associated with the intensity
normalization, d5 jp802p20j, and
CNR5 ðIðp80Þ2Iðp20ÞÞ=r; p80 and p20 are points (nearby
the extracted boundary pixel location) at 80% and 20% of
the maximum intensity value in grid lines, respectively; I
(p) is an intensity value at point p; r is the SD of an ROI
outside the object where there is no signal. The sharpness
score was calculated over valid time frames in which a dis-
tance between upper and lower boundary pixel locations is
>5 pixels. The sharpness score was compared using paired
t-tests for statistical analysis, assuming that the samples
collected along the grid lines are uncorrelated. A P-value
of< 0.001 was used to determine statistical significance.

3.6 | Practical use of the off-resonance
correction

Finally, to determine the practical use of the off-resonance
correction on an end use case, we measure vocal tract dis-
tance, which is a desired metric that is often used in the
speech RT-MRI analysis to obtain constriction degree40-42 or
vocal tract area function.43-45 The distance metric is defined
as the physical distance between the upper and lower boun-
daries shown in Figure 3A. The boundaries are extracted
using the aforementioned method16 with the same initializa-
tion in both sets of images, without and with off-resonance
correction. Distances were measured from both images.

4 | RESULTS

4.1 | Simulation

Figure 2 shows a representative example (static posture
with mouth fully opened) of simulation results with

LIM ET AL.
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different spiral readout durations. Off-resonance blurring is
seen most clearly at the lips, hard palate, and tongue
boundary and becomes more severe with the longer read-
outs as shown in Figure 2B. As the duration of the readout
is longer, the estimated field maps (Figure 2C) tend to be
blurred and amplified in some areas such as the tongue sur-
face and lips surface. Accordingly, high spatial frequency
error can be seen in those area (Figure 2D). The estimated
field map fails to correct for the simulated off-resonance
for the longer readout duration (>5 ms), and the blurred
anatomic structures remain unresolved.

4.2 | Existing speech RT-MRI data

Figure 4 contains representative mid-sagittal image frames
and the corresponding field map estimated for 4 subjects,
which, on visual assessment, presented the most significant
blurring artifacts among the 20 subjects. Note that subject
numbers of 4, 6, 9, and 13 shown in Figure 4 correspond to
those shown in Figure 5. For every image reconstructed
with off-resonance correction, the soft palate, hard palate,
and medial surface of the tongue become more intense and
sharper compared to the blurred images (see yellow
arrows). For all the 4 subjects, posterior to the alveolar
ridge, the hard palate appears sharper up to the soft palate
in the deblurred images. Correspondingly, in the estimated
field maps, the regions that have shown blurred anatomical
structures represent high off-resonance frequency values of
>200Hz.

Figure 6 shows the profiles that are extracted at the solid
lines in the sample image frames from the 3 subjects. For
subject 9, the intensity profile from the deblurred image pro-
vides a clear delineation of the soft palate movements. For
subjects 6 and 13, the intensity in the hard palate in the
deblurred image sequence is more constant along time than
the intensity value in the blurred image sequence. This result

agrees with the fact that the hard palate, which is a bony
structure covered by a thin layer of tissue, does not change
its shape during speech production.17 Furthermore, the inten-
sity profile from the deblurred image exhibits sharper bound-
ary between tongue and air.

Figure 7 illustrates 1 more example of correction result
from subject 4, especially showing the estimated field map
over time. As depicted in the off-resonance frequency value
versus time profile, the proposed method enables capturing
of the dynamic change in off-resonance at the tissue bounda-
ries. Whereas the estimated field map shows high off-
resonance frequency values at the hard palate and tongue
boundaries over time, it shows a low frequency value at
those boundaries during the event of the tongue touching the
hard palate because there is no air between the tongue and
hard palate (see white arrows).

4.3 | Sharpness score

Figure 5 illustrates the sharpness scores and summary table.
Sharpness scores without and with correction were measured
at upper airway boundaries (upper lip, hard palate, and soft
palate) and lower boundaries (lower lip, anterior-, medial-,
and posterior-tongue) described in Figure 3 and averaged
over time. The boundary extraction method used failed to
segment the image from 1 subject because of low image
quality, which was excluded in this sharpness analysis. Over-
all, the sharpness scores show a statistically significant differ-
ence in mean values (correction> no correction, P> 0.001)
for the subjects tested at a majority of the boundaries. The
lower lip shows negligible sharpness improvement in 10 sub-
jects and worse sharpness score in 3 subjects when correction
was applied. The hard palate exhibits worse sharpness score
in 3 subjects after correction compared to no correction,
whereas 15 subjects show improvement in sharpness score
after correction.

FIGURE 3 Illustration of articulator boundary identification and sharpness score evaluation. (A) Airway boundary segmentation with the upper
(superior–posterior) boundary (green, color online) and the lower (inferior–anterior) boundary (red, color online). (B) Gridlines of the upper (yellow) and
lower boundaries (cyan) at several locations along the airway are chosen to obtain intensity profiles. (C) Intensity profile of the gridline is plotted where a
sharpness metric is measured as a slope between the points of 80% and 20% of the maximum intensity values (CNR/d)
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4.4 | Practical use of the off-resonance
correction

Figure 8 illustrates airway boundary segmentation result
based on which the corresponding vocal tract distance

measured from images without and with correction from sub-
ject 6 shown in Figure 4. The uncorrected image exhibits
noticeable errors in the segmentation because of off-
resonance-induced blurring around the hard palate and soft
palate, as indicated with arrows in Figure 8A and erroneous

FIGURE 4 Representative mid-sagittal image frames of vocal tracts for 4 subjects, which, on visual assessment, presented the most significant blur-
ring artifacts and were selected among the 20 subjects. The first and the second columns show images reconstructed with no correction and with correction,
respectively. The last column shows the estimated fieldmaps corresponding to those image time frames. Yellow arrows point out the regions that are most
affected by off-resonance blurring, and corrected by the proposedmethod. See also Supporting Information Video S1
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results on the corresponding vocal tract distance in those area
as shown in Figure 8B.

5 | DISCUSSION

We have developed a dynamic field map estimation method
for spiral RT-MRI where a dynamic field map is directly
estimated from the phase of single-TE dynamic images after
a coil phase compensation. We estimated complex coil sensi-
tivities from single-echo data itself—temporally averaged
and spatially low-pass filtered image. The proposed method
could provide partial off-resonance correction for previously

collected spiral RT-MRI data sets because it does not require
the additional acquisition of the coil sensitivity map. The
proposed method is simple, computationally less demanding,
and when combined with the iterative image reconstruction,
improves sharpness of the vocal tract articulator boundaries
including the upper lip, hard palate, soft palate, and tongue
boundaries (except for the lower lip) in a majority of the
19 subjects tested. This has the potential to improve the
downstream analysis of the dynamics of articulators during
speech.

The signal equation in Equation 3 ignores phase accrual
during the spiral readout. This assumption is not strictly true
and becomes less valid for long spiral readout duration and/

FIGURE 5 Sharpness without and with correction at different articulator boundary locations. Sharpness scores are measured at the upper boundaries
(upper lip, hard palate, and soft palate) and lower boundaries (lower lip, anterior-, medial-, and posterior-tongue) along time. The mean and the SD of the
sharpness scores over time are shown here where the 19 subjects are presented in descending order of average uncorrected sharpness score. A paired t-test
was performed at each articulator boundary for each individual subject to test for the significance of the sharpness difference. The sharpness scores marked
with an asterisk (*) were not found to be statistically different. All remaining scores were found to have significant mean differences (P< 0.001). Summary
table in the bottom left panel summarizes the significance of mean sharpness score difference between no correction and correction in three different cate-
gories: (white) no correction< correction, (gray) no significant difference between no correction and correction, and (black) no correction> correction
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or large resonant frequency offsets. In most cases, the PSF in
Equation 2 is no longer sharp impulse nor pure real at the
origin, which distorts the complex images used for the field
map estimation. This PSF distortion is the basis of auto-
focus methods. As readout duration is increased, phase, and
therefore the estimated field map, tend to be erroneously
blurred and amplified as can be seen in the simulation result
(Figure 2C). These are practical limitations to the proposed
method. Our findings suggest that for speech RT-MRI at
1.5T, the proposed method will fail to work reliably for read-
out durations >5 ms. An area of future work is investigating
and predicting phase error caused by the non-ideal impulse
with longer spiral readout.

An important issue in the field map estimation relates to
the accuracy of the coil sensitivity maps. We low-pass-
filtered the time-averaged image to estimate the coil map.
This stems from an assumption that the coil maps contain
only low spatial-frequency information and are stationary.
Although the deblurred result demonstrated improvement in
the sharpness at the boundaries compared to the original
uncorrected images, the correction based on this coil map
estimation depends on whether the anatomic structure and its

FIGURE 6 Illustration of improved sharpness of articulator boundaries. The first column shows an example frame for 3 different subjects and the sec-
ond column shows intensity versus time profiles marked by the solid lines in the first column images where each of the solid lines corresponds to one of the
gridlines shown in Figure 3. For all subjects, the intensity time profiles from image sequences reconstructed with correction exhibit sharper boundary
between tongue and air than that from image sequences with no correction. For subject 9, the intensity profile from the correction provides a clear delinea-
tion of the soft palate movements. For subjects 6 and 13, the correction method provides more constant intensity in the hard palate along time than image
sequence with no correction

FIGURE 7 Illustration of the estimated field map over time. The first
column shows example frames of reconstructed images and fieldmap cor-
responding to the white dot box shown in Figure 4. The second column
shows intensity versus time profiles marked by the dot lines in the first col-
umn images. In the estimated field map, high off-resonance frequency val-
ues are shown at the hard palate (400Hz) and tongue (200Hz) boundaries
over time except when the tongue contacts the hard palate. This is because
when the tongue touches the hard palate, there is neither air and susceptibil-
ity difference between them. See also Supporting Information Video S2

LIM ET AL.
Magnetic Resonance in Medicine | 9



field map are passed by its filtering process and show up in
the sensitivity map or not. The proposed method corrects
field inhomogeneity that is not low-pass filtered. Note that
low-pass filtered (and time-averaged) phase is assigned as
coil phase. The window size of the low pass filter needs to
be chosen as large as possible not to capture abruptly varying
phase because of off-resonance at articulator boundaries
while it also needs to be kept adequate to obtain the spatially
smoothly varying coil phase. However, it would be hard for
one to optimize the choice of the size without knowing the
object and the coil configuration in detail. In addition, as we
described earlier, a precise shimming is required because the
zero- and first-order field inhomogeneity is highly likely to
be included in the estimated coil map and could be a main
source of the error in the estimated field map. An alternative
solution to these limitations of the coil sensitivity map esti-
mation would be to use an additional 2-echo, static scan to
estimate coil sensitivity maps that are free of phase because
of off-resonance and B0 field inhomogeneity.46 This solution
is a work in progress in terms of comprehensive data collec-
tion and validation.

Another consideration for the field map estimation is to
maintain an acceptable SNR level for the complex image.
This is because error in phase is closely related to the SNR

of the magnitude image (i.e., ru51=SNR),47 as is the field
map error (i.e., rf5ru=ð2p3TEÞ51=ð2p3TE3SNRÞ). For
example, if SNR5 10 and TE5 0.8 ms, the field map stand-
ard deviation is rf 5 19.9Hz. At readout duration of 2.5 and
5.0 ms, this error causes phase accrual error during spiral
readout at the edge of the k-space of 18 8 and 36 8, respec-
tively. Therefore, it is important to have sufficient SNR with
respect to the given TE and readout duration so that the accu-
racy of the estimation is less affected by noise. We chose a
33 33 3 Hanning window (in r-t) to maintain an adequate
SNR> 60 in the ROI so that rf < 3.3Hz theoretically. Note

that SNR is approximately increased by 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP​ðwiÞ2

q
where wi is the weight of the Hanning window. However,
the use of large window could also result in smoothing out
high frequency features.

Field map was estimated from images reconstructed
using view-sharing with a temporal window of 78 ms (fully
sampled k-space, 13 spirals). It is possible that articulator
movement within the temporal window (<<78 ms) could
result in temporal blurring of the field map or residual spiral
artifact. Temporal blurring could give rise to errors in the
artifact-corrected image as there is a discrepancy in the tem-
poral windows between the estimated field maps and the cor-
rected images. For example, if the tongue tip moves so
rapidly that temporal blurring around the tongue tip appears
in the field map but not in the image to be reconstructed,
there could be unresolved blurring by off-resonance around
the tongue tip. Residual spiral artifact that affects the phase
of the complex image could also lead to erroneous field map.
This is 1 of the limitations of the view-sharing scheme used
in this work for field map estimation.

We excluded noise-only area in the estimated field map
using a mask. The mask was calculated from the distorted
complex images where signal loss often manifests at some
boundaries such as the hard palate and soft palate. Therefore,
locations containing a high frequency feature could errone-
ously be masked out as zero. A more sophisticated method
for generating field map masks should be investigated to mit-
igate this type of error.

We measured the sharpness score in several specific air–
tissue boundary locations along the vocal tract to quantita-
tively evaluate the effectiveness of the proposed method.
However, no metric is perfect, and the sharpness score was
found to be sensitive to several factors. The boundary sharp-
ness score is highly dependent on the location pre-identified
as the true boundary. In the presence of signal loss because
of off-resonance effect, the semi-automatic boundary seg-
mentation method may fail. Specifically, the boundary loca-
tion can be incorrectly identified. We often found this case in
the original uncorrected image. For example, the boundary at
the hard palate and soft palate is ambiguous and segmented
erroneously as shown in Figure 8A. In this case, it is hard to

FIGURE 8 Representative illustration of airway boundary segmen-
tation results on images without and with correction from subject 6. (A)
Airway boundary segmentation with a same initialization was performed
on images without and with correction, to extract the upper and lower
boundaries (green and red contours). As indicated by red arrows, the un-
corrected image shows segmentation errors at the hard palate and soft pal-
ate because of off-resonance-induced blurring. (B) Vocal tract distance,
defined as the distance between the upper and lower boundaries, is plotted.
Discernible errors are observed around the hard palate and soft palate in
the uncorrected data.

10 | Magnetic Resonance in Medicine
LIM ET AL.



fairly compare the scores between the uncorrected and cor-
rected images. To address this problem in this work, we used
a boundary location extracted from the corrected image to
measure the score in both the uncorrected and corrected
images.

Ultimately, it is important to evaluate the impact of the
off-resonance correction on RT-MRI analysis in speech sci-
ence. For example, in Figure 8, we have conducted segmen-
tation of the vocal tract and shown observable improvement
in the segmentation and measurement of the vocal tract dis-
tance after correction is applied as a use case example in RT-
MRI analysis. Nevertheless, because in many cases the
improvement would be not so much noticeable by visual
inspection as shown in Figure 8, a better way to evaluate
improvement in the segmentation result would be to compare
the segmentation results with manual segmentation results.
However, because of the very large number of frames in the
RT-MRI data sets, performing a manual segmentation is not
practical. Hence, in ongoing work, we are investigating a
methodology to evaluate the segmentation results without
manual reference.

6 | CONCLUSIONS

We have developed and demonstrated a simple method for
estimating a dynamic field map from spiral RT-MRI data of
speech and incorporating the correction of the off-resonance
into the constrained image reconstruction. We use the base
image phase from single-echo data, after some initial proc-
essing, to estimate the field map directly by assigning the
smoothly varying time-averaged phase to be used as coil
phase and the residual high-frequency phase variations to the
dynamic field map. We have demonstrated improvements in
depiction of the vocal tract articulators at several air–tissue
boundaries both visually and through a sharpness metric and
the practical use of this method on the boundary segmenta-
tion and distance metric as a use case example.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the
online version of this article.
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VIDEO S1 Comparison of results with no correction and
correction for 4 different subjects. This supporting informa-
tion video corresponds to Figure 4
VIDEO S2 Illustration of the estimated field map over
time. This supporting information video corresponds to
Figure 7
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