

Paper #1005, ISMRM 2020

Attention-gated convolutional neural networks for off-resonance correction of spiral real-time MRI

Yongwan Lim, Shrikanth S. Narayanan, Krishna S. Nayak

Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA

ONE COMMUNITY

ISMRM & SMRT Virtual Conference & Exhibition 08-14 August 2020

Declaration of Financial Interests or Relationships

Speaker Name: Yongwan Lim

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Vocal tract

Vocal tract

Vocal tract

- Off-resonance artifacts due to local susceptibility difference between air and tissue
 - Spatially and temporally varying

Vocal tract

- Off-resonance artifacts due to local susceptibility difference between air and tissue
 - Spatially and temporally varying

Off-resonance artifacts due to local susceptibility **Vocal tract** \bullet difference between air and tissue Spatially and temporally varying Ø /elum lips ongue 2.4mm², 12ms/frame, R=6.5 @ USC **Blurring Artifact After De-Blurring** YONGWANL@USC.

Off-resonance Deblurring

• Standard Approaches¹⁻⁴:

Blurry Image

Deblurred Image

[1] KS Nayak et al, MRM. 2001[2] BP Sutton et al, JMRI. 2010

[3] Y Lim et al. MRM. 2019 [4] DC Noll et al, MRM. 1992

Off-resonance Deblurring

• Standard Approaches¹⁻⁴:

Deblurred Image

- 1. Field map acquisition
 - Dual-TE (cf: single-TE or auto-focus)
 - Reduced scan efficiency
- 2. Spatially-varying deconvolution
 - Non-iterative or iterative methods
 - Computationally slow (~minutes)

[1] KS Nayak et al, MRM. 2001[2] BP Sutton et al, JMRI. 2010

[3] Y Lim et al. MRM. 2019 [4] DC Noll et al, MRM. 1992

Off-resonance Deblurring

• Standard Approaches¹⁻⁴:

- 1. Field map acquisition
 - Dual-TE (cf: single-TE or auto-focus)
 - Reduced scan efficiency
- 2. Spatially-varying deconvolution
 - Non-iterative or iterative methods
 - Computationally slow (~minutes)

[1] KS Nayak et al, MRM. 2001[2] BP Sutton et al, JMRI. 2010

[3] Y Lim et al. MRM. 2019 [4] DC Noll et al, MRM. 1992

CNN-based Deblurring¹

[1] Y Lim, et al, MRM. 2020. 10.1002/mrm.28393

USCViterbi

School of Engineering

CNN-based Deblurring¹

School of Engineering

)) YONGWANL@USC.E

CNN-based Deblurring¹

School of Engineering

A supervised spatially varying deconvolution

In test time

- 1. Does NOT rely on field map
- 2. FAST (~milliseconds)

[1] Y Lim, et al, MRM. 2020. 10.1002/mrm.28393

ReLU nonlinearity

• Provides a spatially-varying binary mask to convolution filters, enabling spatially-varying convolution.

ReLU nonlinearity

• Provides a spatially-varying binary mask to convolution filters, enabling spatially-varying convolution.

ReLU nonlinearity

• Provides a spatially-varying binary mask to convolution filters, enabling spatially-varying convolution.

ReLU nonlinearity

• Provides a spatially-varying binary mask to convolution filters, enabling spatially-varying convolution.

$$=\begin{cases} 1 & \text{if } F > 0 \\ 0 & \text{o.w} \end{cases} \quad F' = F \otimes M(F)$$

- The binary mask is computed only based on the sign of pixel value in an element-wise manner.
- It cannot exploit local spatial or channel (filter) dependency, unlike the conventional deblurring methods such as multi-frequency reconstruction¹ or autofocus².

YONGWANL

[1] LC Man et al, MRM 1997 [2] DC Noll et al, MRM 1992

Goal of This Work

To exploit spatial and channel relationships of filtered outputs to improve the expressiveness of a network

...and enables an efficient off-resonance deblurring in the application of spiral RT-MRI of speech

YONGWANL@USC

 $F_1' = F_1 \otimes M_1(F_1)$ $F_2' = F_2 \otimes M_2(F_2)$

 $F_1' = F_1 \otimes M_1(F_1)$ $F_2' = F_2 \otimes M_2(F_2)$

Methods

<u>Data</u>:

- 2D midsagittal speech spiral RT-MRI scans¹
- Training data generation
 - Off-resonance correction² and simulation³

Methods

<u>Data</u>:

- 2D midsagittal speech spiral RT-MRI scans¹
- Training data generation
- Train, validation, and test: 23, 5, and 5 subjects

• <u>Network</u>:

- Loss function: $\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_{gdl}$ (\mathcal{L}_{gdl} : gradient difference loss⁴)
- Adam optimizer, batch size = 64, epoch = 200

Evaluation:

- Comparisons: AG-CNN, CNN³, IR (iterative reconstruction)⁵
- Quality measures: PSNR, SSIM, HFEN

))

School

School

0.5

School

School

Architecture	(f ₁ , f ₂)	Params	PSNR	SSIM	HFEN (x100)
CNN (9-5-1)	-	61.7K	29.29	0.944	0.088
+AG	(5,5)	70.7K	30.63	0.959	0.053
+AG	(5,3)	70.0K	30.62	0.959	0.057
+AG	(5,1)	69.6K	30.61	0.959	0.057
+AG	(3,3)	68.4K	30.69	0.958	0.055
+AG	(3,1)	68.1K	30.58	0.958	0.058
(Blurred) Input	-	-	22.16	0.812	0.568

- Improved deblurring performance with less sensitivity to the kernel size but with a slight overhead.
- (f1, f2)=(3, 3) is chosen.

Architecture	(f ₁ , f ₂)	Params	PSNR	SSIM	HFEN (x100)
CNN (9-5-1)	-	61.7K	29.29	0.944	0.088
+AG	(5,5)	70.7K	30.63	0.959	0.053
+AG	(5,3)	70.0K	30.62	0.959	0.057
+AG	(5,1)	69.6K	30.61	0.959	0.057
+AG	(3,3)	68.4K	30.69	0.958	0.055
+AG	(3,1)	68.1K	30.58	0.958	0.058
(Blurred) Input	-	-	22.16	0.812	0.568

- Improved deblurring performance with less sensitivity to the kernel size but with a slight overhead.
- (f1, f2)=(3, 3) is chosen.

Architecture	(f ₁ , f ₂)	Params	PSNR	SSIM	HFEN (x100)
CNN (9-5-1)	-	61.7K	29.29	0.944	0.088
+AG	(5,5)	70.7K	30.63	0.959	0.053
+AG	(5,3)	70.0K	30.62	0.959	0.057
+AG	(5,1)	69.6K	30.61	0.959	0.057
+AG	(3,3)	68.4K	30.69	0.958	0.055
+AG	(3,1)	68.1K	30.58	0.958	0.058
(Blurred) Input	-	-	22.16	0.812	0.568

- Improved deblurring performance with less sensitivity to the kernel size but with a slight overhead.
- (f1, f2)=(3, 3) is chosen.

Architecture	(f ₁ , f ₂)	Params	PSNR	SSIM	HFEN (x100)
CNN (9-5-1)	-	61.7K	29.29	0.944	0.088
+AG	(5,5)	70.7K	30.63	0.959	0.053
+AG	(5,3)	70.0K	30.62	0.959	0.057
+AG	(5,1)	69.6K	30.61	0.959	0.057
+AG	(3,3)	68.4K	30.69	0.958	0.055
+AG	(3,1)	68.1K	30.58	0.958	0.058
(Blurred) Input	-	-	22.16	0.812	0.568

- Improved deblurring performance with less sensitivity to the kernel size but with a slight overhead.
- (f1, f2)=(3, 3) is chosen.

Architecture	(f ₁ , f ₂)	Params	PSNR	SSIM	HFEN (x100)
CNN (9-5-1)	-	61.7K	29.29	0.944	0.088
+AG	(5,5)	70.7K	30.63	0.959	0.053
+AG	(5,3)	70.0K	30.62	0.959	0.057
+AG	(5,1)	69.6K	30.61	0.959	0.057
+AG	(3,3)	68.4K	30.69	0.958	0.055
+AG	(3,1)	68.1K	30.58	0.958	0.058
(Blurred) Input	-	-	22.16	0.812	0.568

- Improved deblurring performance with less sensitivity to the kernel size but with a slight overhead.
- (f1, f2)=(3, 3) is chosen.

Results: Comparisons

YONGWANL@USC.EDU 37

Results: Comparisons

YONGWANL@USC.EDU 38

Ground truth Uncorrected

School of Engineering

School of Engineering

Conclusion

- We develop the AG-CNN-based deblurring method for spiral RT-MRI in speech production.
- AG module could capture spatial and channel relationships of filtered outputs and improves deblurring performance with a slight overhead.
- An extensive comparison with existing attention approaches applicable to this task remains as future work.

Paper #1005, ISMRM 2020

Attention-gated convolutional neural networks for off-resonance correction of spiral real-time MRI

Yongwan Lim, Shrikanth S. Narayanan, Krishna S. Nayak

Thank you for your attention!

If you have any questions, please contact me: YONGWANL@USC.EDU

